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A shared-memory system
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Real World: Multi-CPU and Multi-Core NUMA System
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Process vs. Thread

Process

I a block of memory for the stack

I a block of memory for the heap

I descriptors of resources allocated by the
OS for the process, such as file
descriptors (STDIN, STDOUT,
STDERR)

I security information about what the
process is allowed to access hardware,
who is the owner, etc.

I process state: content of registers,
program counter, state (ready to run,
waiting on resource)

Thread

I “light-weight” processes, that live within
a process and have access to its data
and resources

I have their own process state, such as
program counter, content of registers,
and stack

I share the process heap

I each thread follows its own flow of
control

I works on private data and can
communicate with other threads via
shared data
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What is OpenMP?

I an Open specification for Multi
Processing

I a collaboration between hardware and
software industry

I a high-level application programming
interface (API) used to write
multi-threaded, portable shared-memory
applications

I defined for both C/C++ and Fortran



OpenMP Runtime library

Directives,
Compiler

OpenMP
Library

Environment
Variables

OS/system support for shared memory and threading



OpenMP in a Nutshell

I OpenMP is NOT a programming
language, it extends existing languages

I OpenMP makes it easier to add
parallelization to existing serial code

I It can be added incrementally

I You annotate your code with OpenMP
directives

I This gives the compiler the necessary
information to parallelize your code

I The compiler itself can then be seen as
a black box that transforms your
annotated code into a parallel version
based on a well-defined set of rules

Serial Code

Code with OpenMP directives

º Compiler Magic

Parallel Program



Directives Format

A directive is a special line of source code which only has a meaning for supporting
compilers.
These directives are distinguished by a sentinel at the start of the line

Fortran
!$OMP (or C$OMP or *$OMP)

C/C++
#pragma omp



OpenMP in C++

I Format

#pragma omp directive [clause [clause]...]

I Library functions are declared in the omp.h header

#include <omp.h>
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Serial Hello World

#include <stdio.h>

int main() {
printf("Hello World!\n");

return 0;
}

Output:

Hello World!



Hello OpenMP

#include <stdio.h>

int main() {
#pragma omp parallel
printf("Hello OpenMP!\n");

return 0;
}



Hello OpenMP

#include <stdio.h>

int main() {
printf("Starting!\n");

#pragma omp parallel
printf("Hello OpenMP!\n");

printf("Done!\n");

return 0;
}

Output:

Starting!
Hello OpenMP!
Hello OpenMP!
Hello OpenMP!
Hello OpenMP!
Done!



Hello OpenMP

printf("Starting!");

printf("Hello OpenMP!"); printf("Hello OpenMP!"); printf("Hello OpenMP!"); printf("Hello OpenMP!");

printf("Done!");



Compiling an OpenMP program

GCC

gcc -fopenmp -o omp_hello omp_hello.c

g++ -fopenmp -o omp_hello omp_hello.cpp

Intel

icc -qopenmp -o omp_hello omp_hello.c

icpc -qopenmp -o omp_hello omp_hello.cpp



Running an OpenMP program

# default: number of threads equals number of cores
./omp_hello

# set environment variable OMP_NUM_THREADS to limit default
$ OMP_NUM_THREADS=4 ./omp_hello

# or

$ export OMP_NUM_THREADS=4
$ ./omp_hello
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parallel region

Launches a team of threads to execute a block of structured code in parallel.

#pragma omp parallel
statement; // this is executed by a team of threads

// implicit barrier: execution only continues when all
// threads are complete

#pragma omp parallel
{

// this is executed by a team of threads
}
// implicit barrier: execution only continues when all
// threads are complete



C/C++ and Fortran Syntax

C/C++

#pragma omp parallel [clauses]
{

...
}

Fortran

!$omp parallel [clauses]
...
...
!$omp end parallel



Fork-Join

main (thread 0)

thread 1

thread 2

thread 3

I Each thread executes the structured block independently

I The end of a parallel region acts as a barrier
I All threads must reach this barrier, before the main thread can continue.



Different ways of controlling the number of threads

1. At the parallel directive

#pragma omp parallel num_threads(4)
{

...
}

2. Setting a default via the omp_set_num_threads(n) library function
Set the number of threads that should be used by the next parallel region

3. Setting a default with the OMP_NUM_THREADS environment variable
number of threads that should be spawned in a parallel region if there is no other
specification. By default, OpenMP will use all available cores.



if-clause

We can make a parallel region directive conditional. If the condition is false, the code
within runs in serial (by a single thread).

#pragma omp parallel if(ntasks > 1000)
{

// do computation in parallel or serial
}



Library functions

I Requires the inclusion of the omp.h header!

omp_get_num_threads()
Returns the number of threads in current team

omp_set_num_threads(n)
Set the number of threads that should be used by the next parallel region

omp_get_thread_num()
Returns the current thread’s ID number

omp_get_wtime()
Return walltime in seconds



Hello World with OpenMP

#include <stdio.h>
#include <omp.h>

int main() {
#pragma omp parallel
{

int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();
printf("Hello from thread %d/%d!\n", tid, nthreads);

}
return 0;

}



Output of parallel Hello World

Output of first run:

Hello from thread 2/4!
Hello from thread 1/4!
Hello from thread 0/4!
Hello from thread 3/4!

Output of second run:

Hello from thread 1/4!
Hello from thread 2/4!
Hello from thread 0/4!
Hello from thread 3/4!

Execution of threads is non-deterministic!
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OpenMP Data Environment



Variable scope: private and shared variables
I by default all variables which are visible in the parent scope of a parallel region are

shared
I variables declared inside of the parallel region are by definition of the scoping rules of

C/C++ only visible in that scope. Each thread has a private copy of these variables

int a; // shared

#pragma omp parallel
{

int b; // private
...
// both a and b are visible
// a is shared among all threads
// each thread has a private copy of b
...

} // end of scope, b is no longer visible



Variable scope: private and shared variables
I a variable’s scope can be modified at the beginning of a parallel region using clauses
I useful for legacy code where all variables are declared at the beginning of a function.

E.g. in Legacy Fortran an C code you need to declare all variables at the beginning of
a function.

int a = 1.0;
int b = 3.0;
int c = 5.0;

#pragma omp parallel shared(a) private(b,c)
{

// a is shared among all threads (a = 1.0)
// each thread has a private copy of b and c
// b = uninitialized
// c = uninitialized
// outside b and C are not visible
...

}



Variable scope: private and shared variables

Equivalent

int a = 1.0;
int b = 3.0;
int c = 5.0;

#pragma omp parallel shared(a)
{

// a is shared among all threads (a = 1.0)
// each thread has a private copy of b and c
int b, c;
// outside b and c are not visible
...

}



Variable scope: firstprivate

I the firstprivate clause does the same as private, but initializes each copy
with the value of the parent thread.

int a = 1.0;
int b = 3.0;
int c = 5.0;

#pragma omp parallel firstprivate(b) private(c)
{

// a is shared
// the value of the private b is 3.0
// the value of the private c is uninitialized
...

}



Variable scope: default
I you can change default scope of variables using the default clause
I valid values: shared and none
I when default is none, the compiler will complain about variables which aren’t

either marked shared, private or firstprivate
I this is useful to avoid bugs

int a = 1.0;
int b = 3.0;
int c = 5.0;

#pragma omp parallel default(none) firstprivate(b) private(c)
{

// accessing a will create a compile error,
// since it’s not part of any shared, private or firstprivate
// clause
printf("%d\n", a);
...

}
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A motivating example: Trapezoidal Rule

(a) (b)

Figure: Approximating the area using the trapezoidal rule



∫ b

a
f (x)dx ≈ (b−a)

n︸ ︷︷ ︸
h

[
f (x0)+ f (x1)

2
+

f (x1)+ f (x2)

2
+ . . .+

f (xn−2)+ f (xn−1)

2
+

f (xn−1)+ f (xn)

2

]

∫ b

a
f (x)dx ≈ (b−a)

n︸ ︷︷ ︸
h

[
f (x0)

2
+ f (x1)+ f (x2)+ . . .+ f (xn−1)+

f (xn)

2

]

double h = (b - a) / n;
double approx = (f(a) + f(b)) / 2.0;

for(int i = 1; i <= n-1; ++i) {
double x_i = a + i*h;
approx += f(x_i);

}
approx = h * approx;



Trapozoidal Rule

(a) (b)

Figure: Splitting the work between two threads



+

local_result0 local_result1

global_result



First attempt
double global_result = 0.0;

#pragma omp parallel
{

double h = (b - a) / n;
int local_n = ...
double local_a = ...
double local_b = ...

double local_result = (f(local_a) + f(local_b)) / 2.0;
for(int i = 1; i <= local_n-1; ++i) {

double x_i = local_a + i*h;
local_result += f(x_i);

}
local_result = h * local_result;

...
}



Each thread should be assigned a block of nlocal trapezoids1:

int nlocal = n / nthreads;

Then for each thread, the left endpoint of the range will be:

thread 0: local_a = a + 0*nlocal*h;
thread 1: local_a = a + 1*nlocal*h;
thread 2: local_a = a + 2*nlocal*h;
...

therefore:

double local_a = a + tid * nlocal * h;

Since the lengh of the assigned interval is nlocal*h, the right endpoint is set to:

double local_b = local_a + nlocal * h;

1let’s assume n can be divided by nthreads without remainder



double global_result = 0.0; // shared variable

#pragma omp parallel
{

double h = (b - a) / n;

int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();

int local_n = n / nthreads;
double local_a = a + tid * local_n * h;
double local_b = local_a + local_n * h;

double local_result = (f(local_a) + f(local_b)) / 2.0;
for(int i = 1; i <= local_n-1; ++i) {

double x_i = local_a + i*h;
local_result += f(x_i);

}
local_result = h * local_result;

...
}



double global_result = 0.0; // shared variable

#pragma omp parallel
{

double h = (b - a) / n;

int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();

int local_n = n / nthreads;
double local_a = a + tid * local_n * h;
double local_b = local_a + local_n * h;

double local_result = (f(local_a) + f(local_b)) / 2.0;
for(int i = 1; i <= local_n-1; ++i) {

double x_i = local_a + i*h;
local_result += f(x_i);

}
local_result = h * local_result;

global_result += local_result;
}







A single line of source code is usually more than one instruction!

a = a + b;

load a to register1
load b to register2
add register1 and register2
store result to a



Execution Order: Variant A

Time Thread 0 Thread 1
0 compute local_result compute local_result
1 load global_value=0 to register
2 load local_result=1 to register
3 add registers
4 store global_value=1
5 load global_result=1 to register
6 load load_result=3 to register
7 add registers
8 store global_value=4

Final value: global_value = 4



Execution Order: Variant B

Time Thread 0 Thread 1
0 compute local_result compute local_result
1 load global_result=0 to register
2 load load_result=3 to register
3 add registers
4 store global_value=3
5 load global_value=3 to register
6 load local_result=1 to register
7 add registers
8 store global_value=4

Final value: global_value = 4



Execution Order: Variant C

Time Thread 0 Thread 1
0 compute local_result
1 load global_value=0 to register compute local_result
2 load local_result=1 to register load global_result=0 to register
3 add registers load load_result=3 to register
4 store global_value=1 add registers
5 store global_value=3

Final value: global_value = 3



Execution Order: Variant D

Time Thread 0 Thread 1
0 compute local_result
1 compute local_result load global_result=0 to register
2 load global_value=0 to register load load_result=3 to register
3 load local_result=1 to register add registers
4 add registers store global_value=3
5 store global_value=1

Final value: global_value = 1



We have a data-race!



Race Condition

A race condition exists when the following is true:

1. one or more threads read the same data location

2. at least one of them is writing that data location

A block of code that causes a race condition is called a critical section.



Synchronization: critical directive

I ensures that threads have mutually-exclusive access to a block of code

I only one thread can enter a critical section

I effectively serializes execution of this block of code

I all unnamed critical blocks in the same parallel block are treated as one
I expensive!

#pragma omp critical
global_result += local_result;

#pragma omp critical
{

global_result += local_result;
}



Synchronization: Named critical blocks

I Non overlapping critical
sections can run in parallel

I Useful to minimize blocking if
not needed

if(...) {
// threads that go this way...
#pragma omp critical(a)
{

// modify shared resource a
}

} else {
// ... don’t block threads that
// go this way.
#pragma omp critical(b)
{

// modify shared resource b
}

}



Synchronization: atomic directive

I atomic enables mutual exclusion for
some simple operations

I these are converted into special
hardware instructions if supported

I however, it only protects the read/update
of the target location

#pragma omp parallel
{

// compute my_result

#pragma omp atomic
x += my_result;

}

acceptable operations

I x++

I x--

I ++x

I --x

I x binop= expr

I x = x binop expr

I x = expr binop x

where binop is one of
+ * - / & ^ | << >>



Synchronization: atomic directive

#pragma omp parallel
{

#pragma omp atomic
x += func(); // warning func() is not atomic!

}



Synchronization

#pragma omp parallel
{

// initialize data in parallel

// STOP! do not continue until all data is initialized!

// process data in parallel
}



Synchronization: barrier directive

This directive synchronizes the threads in a team by causing them to wait until all of the
other threads have reached this point in the code.

#pragma omp parallel
{

// do something in parallel using your team of threads

#pragma omp barrier
// wait until all threads reach this point

// continue computation in parallel
}



Measuring elapse walltime

double tstart = omp_get_wtime();
// do work
double duration = omp_get_wtime() - tstart;

#pragma omp parallel
{

double tstart = omp_get_wtime();
// do part 1

#pragma omp barrier

double part1_duration = omp_get_wtime() - tstart;

// continue with part 2
}
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Let’s refactor our trapezoid example

Define a function which does the local sum in range [locala, localb]

double local_sum(double local_a, double local_b, int local_n, double h) {
double local_result = (f(local_a) + f(local_b)) / 2.0;
for(int i = 1; i <= local_n-1; ++i) {

double x_i = local_a + i*h;
local_result += f(x_i);

}
local_result = h * local_result;
return local_result;

}



Let’s refactor our trapezoid example

double global_result = 0.0;

#pragma omp parallel
{

double h = (b - a) / n;

int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();

int local_n = n / nthreads;
double local_a = a + tid * local_n * h;
double local_b = local_a + local_n * h;

// what is wrong with this code?
#pragma omp critical
global_result += local_sum(local_a, local_b, local_n, h);

}



Use a local variable instead

double global_result = 0.0;

#pragma omp parallel
{

double h = (b - a) / n;

int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();

int local_n = n / nthreads;
double local_a = a + tid * local_n * h;
double local_b = local_a + local_n * h;

double local_result = local_sum(local_a, local_b, local_n, h);

#pragma omp atomic
global_result += local_result;

}



OpenMP reduction clause
I creates a private variable for each thread
I each thread works on private copy
I finally all thread results are accumulated using operator
I allowed operators: +, -, *, &, |, ^, &&, ||, min, max
I each operator has a default initialization value (e.g. 0 for addition, 1 for multiplication)

double global_result = 0.0;

#pragma omp parallel reduction(+:global_result)
{

double h = (b - a) / n;
int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();
int local_n = n / nthreads;
double local_a = a + tid * local_n * h;
double local_b = local_a + local_n * h;

global_result += local_sum(local_a, local_b, local_n, h);
}
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Work Sharing Constructs

I the parallel construct alone creates a Single Program Multiple Data (SPMD) program

I each thread executes the same code independently

I Work sharing constructs are used to split up the work

I They do NOT launch new threads!

I for-loop construct

I section construct

I single and master construct

I task construct (explained in another lecture)



Loop worksharing: for loop
for(int i = 0; i < N; i++) {

a[i] = a[i] + b[i];
}

#pragma omp parallel
{

int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();
int local_a = tid * N / nthreads;
int local_b = (tid+1) * N / nthreads;
if(id == threads - 1) local_b = N;

for(int i = local_a; i < local_b; i++) {
a[i] = a[i] + b[i];

}
}



Loop worksharing: for loop

for(int i = 0; i < N; i++) {
a[i] = a[i] + b[i];

}

#pragma omp parallel
{

#pragma omp for
for(int i = 0; i < N; i++) {

a[i] = a[i] + b[i];
}

}



Combining parallel and for construct

#pragma omp parallel
{
#pragma omp for
for(int i = 0; i < N; i++) {

a[i] = a[i] + b[i];
}

}

#pragma omp parallel for
for(int i = 0; i < N; i++) {

a[i] = a[i] + b[i];
}



Loops that can be parallelized

Loops that can’t be parallelized

for (;;) {
}

for (int i = 0; i < n; i++) {
if( ... ) break;
...

}



Loops with data-dependencies

fibo[0] = fibo[1] = 1;
#pragma omp parallel for
for(int i = 2; i < n; i++) {

fibo[i] = fibo[i-1] + fibo[i-2];
}

Compiles, but is broken code.

1. OpenMP compilers do not check for dependencies among iterations

2. Loops, in which the result of one or more iterations depends on other iterations cannot
be parallelized.



Loop worksharing: schedule clause

static schedule

#pragma omp parallel for schedule(static)
for(int i = 0; i < 1000; ++i) {

work(i);
}

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3



Loop worksharing: schedule clause
static schedule with custom chunk size

#pragma omp parallel for schedule(static,4)
for(int i = 0; i < 16; ++i) {

work(i);
}

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

#pragma omp parallel for schedule(static,1)
for(int i = 0; i < 16; ++i) {

work(i);
}

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3



Loop worksharing: schedule clause

schedule(static[, chunk])
Divide iteration space into block of size chunk. Each thread is given a static set of blocks to
work on. If chunk isn’t specified, the iteration space is evenly divided among all threads.

schedule(dynamic[, chunk])
Divide iteration space into block of size chunk. At runtime, each thread grabs the next
available block from a queue.

schedule(guided[, chunk])
Threads grab blocks dynamically. The block size starts out large and shrinks down to size
chunk.

schedule(runtime)
Schedule and chunk size are set by OMP_SCHEDULE environment variable



nowait clause

Work sharing constructs have a implict barrier at their end. With nowait you can allow them
to continue after they finish their part.

#pragma omp parallel
{

#pragma omp for
for(...) {
}
// implicit barrier

#pragma omp for
for(...) {
}

}

#pragma omp parallel
{

#pragma omp for nowait
for(...) {
}
// threads can continue

#pragma omp for
for(...) {
}

}



sections directive

I breaks work into separate, discrete
sections. Each section is executed by a
thread

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{

// calculation A
}
#pragma omp section
{

// calculation B
}
#pragma omp section
{

// calculation C
}

}
}



Pipeline and Nested Parallelism

#pragma omp parallel sections
{

#pragma omp section
for(int i = 0; i < N; ++i){

read_input(i);
signal_read(i);

}
#pragma omp section
for(int i = 0; i < N; ++i){

wait_read(i);
process_data(i);
signal_processed(i);

}
#pragma omp section
for(int i = 0; i < N; ++i){

wait_processed(i);
write_output(i);

}
}

void process_data(int i) {
#pragma omp parallel for num_threads(4)
for(int j = 0: j < M; ++j){

do_compute(i, j);
}

}

I Note: nested parallelism has to be enabled in your
OpenMP implementation

I While useful for simple cases, you should be looking into
tasks!



master directive

#pragma omp parallel
{

#pragma omp master
{

// only master thread should execute this
// useful for I/O or initialization
// there is NO implicit barrier!

}

// add explicit barrier if needed
#pragma omp barrier
...

}



single directive

#pragma omp parallel
{

#pragma omp single
{

// only one thread will execute this block
// all others wait until it completes
// implicit barrier!

}
}

#pragma omp parallel
{

#pragma omp single nowait
{

// only one thread will execute this block
// others will go right past it

}
}
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Reasons for poor performance

Load-Imbalance
Not distributing work elements evenly among threads. Some threads finish earlier and wait,
while others have to do more work.

Cost of synchronization
Having too many points of synchronization effectively serializes your application and limits
your total speedup.

False Sharing
Multiple threads modifying data in the same cache line. This leads to forced flushes of
memory, which cost extra cycles.



Reasons for poor performance

Data Locality
The placement of data relative to where your thread is executed is important. E.g.,
accessing memory regions which were allocated on a different socket are slower to access.
This is one of the main challenges of dealing with Non-Uniform Memory Access (NUMA)
architectures.

Ineffective use of caches and memory bandwidth saturation
Not taking advantage of caches to reuse data by multiple threads. Not taking advantage of
available memory channels due to bad memory allocation strategy.
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