
LAMMPS

Latin American Introductory School on Parallel Programming
and Parallel Architecture for High-Performance Computing

Dr. Richard Berger

High-Performance Computing Group
College of Science and Technology

Temple University
Philadelphia, USA

richard.berger@temple.edu

mailto:richard.berger@temple.edu


Outline

Introduction

Core Algorithms

Geometric/Spatial Domain Decomposition

Hybrid MPI+OpenMP Parallelization



Outline

Introduction

Core Algorithms

Geometric/Spatial Domain Decomposition

Hybrid MPI+OpenMP Parallelization



What is LAMMPS?

I Classical Molecular-Dynamics Code

I Open-Source, highly portable C++

I Freely available for download under GPL

I Easy to download, install, and run

I Well documented

I Easy to modify and extend with new
features and functionality

I Active user’s email list with over 650
subscribers

I More than 1000 citations/year

I Atomistic, mesoscale, and coarse-grain
simulations

I Variety of potentials (including
many-body and coarse-grain)

I Variety of boundary conditions,
constraints, etc.

I Developed by Sandia National
Laboratories and many collaborators,
such as Temple University



LAMMPS Development Pyramid

“the big boss”
Steve Plimpton

core developers
2x @Sandia, 2x @Temple

core functionality, maitainance, integration

package maintainers
> 30, mostly user pkgs, some core

single/few style contributors
> 100, user-misc and others

Feedback from mailinglist, GitHub Issues



LAMMPS Use Cases

(a) Solid Mechanics

(b) Material Science (c) Chemistry

(d) Biophysics (e) Granular Flow



What is Molecular Dynamics?

Initial Position
and Velocities

MD Engine

Interatomic
Potential

Positions and
Velocities at

many later times

Mathematical Formulation

I classical mechanics

I atoms are point masses mi

I positions, velocities, forces: ri , vi , fi

I Potential Energy Functions: V (rN)

I 6N coupled ODEs

dri

dt
= vi

dvi

dt
=

Fi

mi

Fi =−
d

dri
V
(
rN)



Simulation of Liquid Argon with Periodic Boundary Conditions



Outline

Introduction

Core Algorithms

Geometric/Spatial Domain Decomposition

Hybrid MPI+OpenMP Parallelization



Basic Structure

Setup

Run

I Setup domain & read in parameters and
initial conditions

I Propagate system state over multiple
time steps



Basic Structure

Setup

Update Forces

Integrate EOMs

Output

Each time step consists of

I Computing forces on all atoms

I Integrate equations of motion (EOMs)

I Output data to disk and/or screen



Velocity-Verlet Integration

Setup

Integration Step 1

Update Forces

Integration Step 2

Output

I By default, Velocity-Verlet integration scheme is
used in LAMMPS to propagate the positions of
atoms

1. Propagate all velocities for half a time step and
all positions for a full time step

2. Compute forces on all atoms to get accelerations
3. Propagate all velocities for half a time step
4. Output intermediate results if needed



Force Computation

Setup

Integration Step 1

Update Forces

Integration Step 2

Output

Pairwise Interactions
The total force acting on each atom i is the sum of all
pairwise interactions with atoms j :

Fi = ∑
j 6=i

Fij

Cost
With n atoms the total cost of computing all forces Fij

would be O(n2)



Force Computation

I cost of each individual force computation
depends on selected interaction models

I many models operate using a cutoff distance rc ,
beyond which the force contribution is zero

Lennard-Jones pairwise additive interaction:

Fij =

4ε

[
−12

(
σ

rij

)13
+6
(

σ

rij

)7
]

rij < rc

0 rij ≥ rc



Reducing the number of forces to compute

Verlet-Lists (aka. Neighbor Lists)

I each atom stores a list of neighboring
atoms within a cutoff radius (larger than
force cutoff)

I this list is valid for multiple time steps

I only forces between an atom and its
neighbors are computed

Using Newton’s Third Law of Motion

I Whenever a first body exerts a force F
on a second body, the second body
exerts a force −F on the first body.

I if we compute Fij , we already know Fji

Fji =−Fij

I ⇒We can cut our force computations
in half!

I Neighbor lists only need to be half size



Reducing the number of forces to compute

Verlet-Lists (aka. Neighbor Lists)

I each atom stores a list of neighboring
atoms within a cutoff radius (larger than
force cutoff)

I this list is valid for multiple time steps

I only forces between an atom and its
neighbors are computed

Note:
Finding neighbors is still an O(n2) operation!
But we can do better. . .

Using Newton’s Third Law of Motion

I Whenever a first body exerts a force F
on a second body, the second body
exerts a force −F on the first body.

I if we compute Fij , we already know Fji

Fji =−Fij

I ⇒We can cut our force computations
in half!

I Neighbor lists only need to be half size



Cell List Algorithm

I We want to compute the forces acting on the red
atom

I Without any optimization, we would have look at
all the atoms in the domain



Cell List Algorithm

I We want to compute the forces acting on the red
atom

I Without any optimization, we would have look at
all the atoms in the domain



Cell List Algorithm

I When using Cell Lists we divide our domain into
equal-size cells

I The cell size is proportional to the force cut-off



Cell List Algorithm

I Each atom is part of one cell



Cell List Algorithm

I Because of the size of each cell, we can assume
any neighbor must be within the surrounding cells
of an atom’s parent cell



Cell List Algorithm

I Only a stencil of neighboring cells is searched
when building an atom’s neighbor list:

I 9 cells in 2D
I 27 cells in 3D

I To avoid corner cases additional cells are added
to the data structure which allows using the same
stencil for all cells.

y

x

cell of atom

stencil of surrounding cells

domain cells

additional cells



Finding Neighbors

Setup

Integration Step 1

Neighbor List Building

Update Forces

Integration Step 2

Output

I Combination of Cell-List and Verlet-List algorithm

I Reduces the number of atom pairs which have to
be traversed



Improving caching efficiency

Setup

Integration Step 1

Spatial Sorting

Neighbor List Building

Update Forces

Integration Step 2

Output

I atom data is periodically sorted

I atoms close to each other are placed in nearby
memory blocks

I this can be efficently implemented by sorting by
cells

I this improves cache efficiency during traversal



Outline

Introduction

Core Algorithms

Geometric/Spatial Domain Decomposition

Hybrid MPI+OpenMP Parallelization



Geometric/Spatial Domain Decomposition

I LAMMPS uses spatial decomposition to
scale over many thousands of cores



Geometric/Spatial Domain Decomposition

A B I the simulation box is split into multiple
parts across available dimensions



Geometric/Spatial Domain Decomposition

A B

I each MPI process is responsible for
computations on atoms within its
subdomain

I each subdomain is extended with halo
regions which duplicates information
from adjacent subdomains



Geometric/Spatial Domain Decomposition

A B

I each MPI process is responsible for
computations on atoms within its
subdomain

I each subdomain is extended with halo
regions which duplicates information
from adjacent subdomains



Geometric/Spatial Domain Decomposition

A B

ghost
I each process only stores owned atoms

and ghost atoms

owned atom: process is responsible for
computation and update of
atom properties

ghost atom: atom information comes from
another process and is
synchronized before each time
step



Geometric/Spatial Domain Decomposition

A B

owned

I each process only stores owned atoms
and ghost atoms

owned atom: process is responsible for
computation and update of
atom properties

ghost atom: atom information comes from
another process and is
synchronized before each time
step



Geometric/Spatial Domain Decomposition

A B

owned

I cell lists are used to determine which
atoms need to be communicated



MPI Communication
Setup

Integration Step 1

Communication

Spatial Sorting

Neighbor List Building

Update Forces

Integration Step 2

Output

Setup

Integration Step 1

Communication

Spatial Sorting

Neighbor List Building

Update Forces

Integration Step 2



MPI Communication

I communication happens after first integration step

I this is when atom positions have been updated

I atoms are migrated to another process if necessary

I positions (and other properties) of ghosts are updated

I Each process can have up to 6 communication partners in 3D

I With periodic boundary conditions it can also be its own communication partner (in this
case it will simply do a copy)

I Both send and receive happen at the same time (MPI_Irecv & MPI_Send)



Decompositions

(a) P = 2 (b) P = 4

Figure: Possible domain decompositions with 2 and 4 processes



Communication volume

I The intersection of two adjacent halo regions determines the communication volume in
that direction

I If you let LAMMPS determine your decomposition, it will try to minimize this volume

(a) xz halo region (b) xy halo region

Figure: Halo regions of two different decompositions of a domain with an extent of 1x1x2.



Influence of Process Mapping
I The mapping of processes to physical hardware determines the amount of intra-node

and inter-node communication

I (a) four processes must communicate with another node

I (b) two processes must communicate with another node

(a) (b)

Figure: Two process mappings of a 1x2x4 decomposed domain.



Static and Dynamic load-balancing
I With the default geometic decomposition, balancing happens by shifting boundaries

along each axis and creating a non-uniform grid
I Recursive Coordinate Bisectioning (RCB) gradually partitions space by inserting cut

planes
I Each method tries to balance the number of atoms based on either their number or a

weight function

(a) Uniform grid (b) Non-Uniform grid (c) RCB



Dynamic Load-Balancing in action

http://lammps.sandia.gov/movies/balance.mov

http://lammps.sandia.gov/movies/balance.mov


Outline

Introduction

Core Algorithms

Geometric/Spatial Domain Decomposition

Hybrid MPI+OpenMP Parallelization



Combining MPI with OpenMP

I LAMMPS has a variety of accelerator packages (USER-OMP, KOKKOS, GPU, INTEL)

I USER-OMP package enables OpenMP threading within many simulation steps

I Multiple parts of the simulation loop be parallelized within a node
I Why would you want to do this?

I Better utilization of node resources in some cases
I Reduce MPI communication overhead, use less bandwidth

I For best performance we have to minimize synchronization points inside steps

I Parallelization of integration steps is trivial (simple loops)



Combining MPI with OpenMP
Setup

Integration Step 1

Communication

Spatial Sorting

Neighbor List Building

Update Forces

Integration Step 2

Output

Setup

Integration Step 1

Communication

Spatial Sorting

Neighbor List Building

Update Forces

Integration Step 2



Newton’s 3rd Law: Data Conflict

I Using Newton’s 3rd law introduces a conflict

I Each force computation updates forces of two atoms: force Fij and Fji

#pragma omp parallel for
for(int i = 0; i < nlocal; i++) {

// for each neighbor j
{

sys->fx[i] += fx;
sys->fy[i] += fy;
sys->fz[i] += fz;
sys->fx[j] -= fx; // multiple threads could
sys->fy[j] -= fy; // be writing j!
sys->fz[j] -= fz;

}
}



Avoiding conflict in force computation

Solutions:

I Disable Newton’s 3rd law (Factor 2x!)

I Critical sections (bad)

I Atomics (better)

I Array reduction: each thread works on its own force array, which is later combined to
the global force array (limited scalability per node)

Note
Array reduction is what is currently used in the USER-OMP package in LAMMPS. If multiple
force computations are active, only the last one will perform the final array reduction.



Serial Neighbor List generation

(a) (b) (c) (d)

Figure: Memory allocation during neighbor list building using memory paging. (a) each atom gets enough
memory space to store the maximum amount of neighbors. (b) the actual neighbors are stored and used space
reported back to the allocator. (c) the allocation of the next neighbor list then starts at the beginning of the
previous list. (d) this is repeated until all neighbor lists are generated.

If multiple threads work on this neighbor list generation, allocation of memory needs
to be a critical section and has to be serialized.



First touch policy

I another problem is introduced due to the first-touch policy which is used by Linux

I malloc reserves a memory block from the OS

I however, the actual mapping of allocated memory to physical memory happens when
you try to access any bit in that memory block for the first time

I the kernel will place this memory block on physical memory which is near the CPU
core executing the accessing thread

I that means the thread that first accesses a memory location determines where a
block of memory is placed



Memory contention

L3

Channel A Channel B

L2

L1 L1

C0 C1

L2

L1 L1

C2 C3

(a) global memory access

L3

Channel A Channel B

L2

L1 L1

C0 C1

L2

L1 L1

C2 C3

(b) thread-local memory access

Figure: Memory contention can limit scalability of threaded code. If all threads access memory
which is located closer to a single core, the effective available bandwidth is reduced.



Multi-threaded neighbor list generation

Thread 0 Thread 1 Thread 2 Thread 3

Figure: Multi-threaded generation of neighbor list using a page data structure for each thread. Each
thread works on a sub-sequence of the atom list using its own memory pages to allocate neighbor
lists.



General performance recommendations for hybrid codes

I Use one MPI process per socket / memory channel

I Maximize utilization per MPI process by using OpenMP threads

I Bind threads to cores and ensure data locality

I Minimize load-imbalance and synchronization


	Introduction
	Core Algorithms
	Geometric/Spatial Domain Decomposition
	Hybrid MPI+OpenMP Parallelization

